Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls.
نویسندگان
چکیده
In an effort to maximize the liquid slip on superhydrophobic surfaces, we investigate the role of the nanoscale roughness on microscale structures by developing well-defined micro-nano hierarchical structures. The nonwetting stability and slip length on the dual-scale micro-nano structures are measured and compared with those on single-scale micro-smooth structures. A force balance between a liquid pressure and a surface tension indicates that hydrophobic nanostructures on the sidewall of microposts or microgrates would expand the range of the nonwetted state. When a higher gas fraction or a larger pitch can be tested without wetting, a larger slip length is expected on the microstructures. An ideal dual-scale structure is described that isolates the role of the nanostructures, and a fabrication technique is developed to achieve such a microstructure-smooth tops and nanostructured sidewalls. The tests confirm such micro-nano structures allow a nonwetted state at a higher gas fraction or a larger pitch than the previous micro-smooth structures. As a result, we achieve the maximum slip length of approximately 400 microm on the dual-scale structures, an increase of approximately 100% over the previous maximum reported on the single-scale (i.e., micro-smooth) structures. The study ameliorates our understanding of the role of each scale on hierarchical structures for a wetting transition and a liquid slip. The resulting giant slip is large enough to influence many fluidic applications, even in macroscale.
منابع مشابه
Improving the natural convective heat transfer of a rectangular heatsink using superhydrophobic walls: A numerical approach
The effect of utilizing superhydrophobic walls on improving the convective heat transfer in a rectangular heatsink has been studied numerically in this paper. The vertical walls were kept at isothermal hot-and-cold temperatures and horizontal walls were insulated. The boundary condition on the walls was: no-slip for regular, and slip (with slip length of 500 µm) for superhydrophobic walls. By c...
متن کاملStructured surfaces for a giant liquid slip.
We study experimentally how two key geometric parameters (pitch and gas fraction) of textured hydrophobic surfaces affect liquid slip. The two are independently controlled on precisely fabricated microstructures of posts and grates, and the slip length of water on each sample is measured using a rheometer system. The slip length increases linearly with the pitch but dramatically with the gas fr...
متن کاملEffective slip and friction reduction in nanograted superhydrophobic microchannels
Enabled by a technology to fabricate well-defined nanogrates over a large area 2 2 cm2 , we report the effect of such a surface, in both hydrophilic and hydrophobic conditions, on liquid slip and the corresponding friction reduction in microchannels. The grates are designed to be dense 230 nm pitch but deep 500 nm in order to sustain a large amount of air in the troughs when the grates are hydr...
متن کاملBioinspired super-antiwetting interfaces with special liquid-solid adhesion.
Super-antiwetting interfaces, such as superhydrophobic and superamphiphobic surfaces in air and superoleophobic interfaces in water, with special liquid-solid adhesion have recently attracted worldwide attention. Through tuning surface microstructures and compositions to achieve certain solid/liquid contact modes, we can effectively control the liquid-solid adhesion in a super-antiwetting state...
متن کاملInfluence of surface hierarchy of superhydrophobic surfaces on liquid slip.
We investigated how the surface hierarchy of superhydrophobic (SHPo) surfaces influences liquid slip by testing well-defined microposts that have nanoposts only on their top. Contrary to the commonly held belief, our results show that such hierarchical surfaces do not always lead to an increase of slip length despite their reduced solid fraction and enhanced hydrophobicity compared to single-sc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 25 21 شماره
صفحات -
تاریخ انتشار 2009